Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells.
نویسندگان
چکیده
A strain of Halomonas bacteria, GFAJ-1, has been claimed to be able to use arsenate as a nutrient when phosphate is limiting and to specifically incorporate arsenic into its DNA in place of phosphorus. However, we have found that arsenate does not contribute to growth of GFAJ-1 when phosphate is limiting and that DNA purified from cells grown with limiting phosphate and abundant arsenate does not exhibit the spontaneous hydrolysis expected of arsenate ester bonds. Furthermore, mass spectrometry showed that this DNA contains only trace amounts of free arsenate and no detectable covalently bound arsenate.
منابع مشابه
Structural and Functional Consequences of Phosphate–Arsenate Substitutions in Selected Nucleotides: DNA, RNA, and ATP
A recent finding of a bacterial strain (GFAJ-1) that can rely on arsenic instead of phosphorus raised the questions of if and how arsenate can replace phosphate in biomolecules that are essential to sustain cell life. Apart from questions related to chemical stability, there are those of the structural and functional consequences of phosphate-arsenate substitutions in vital nucleotides in GFAJ1...
متن کامل“Artifactual” arsenate DNA
The recent claim by Wolfe-Simon et al. that the Halomonas bacterial strain GFAJ-1 when grown in arsenate-containing medium with limiting phosphate is able to substitute phosphate with arsenate in biomolecules including nucleic acids and in particular DNA(1) arose much skepticism, primarily due to the very limited chemical stability of arsenate esters (see ref. 2 and references therein). A major...
متن کاملIndispensable or toxic? The phosphate versus arsenate debate
Arsenic (As) is toxic, carcinogenic and causes serious health problems. While As occurs naturally due to volcanic activity, the major anthropogenic sources of As are metal processing, burning of coal and arsenic-based pesticides or herbicides. Arsenate (AsO4) and arsenite (AsO3) are the primary chemical forms found in soil. Because of the wide distribution of arsenic compounds, arsenic resistan...
متن کاملBacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine.
A strictly anaerobic arsenate-respiring bacterium isolated from a gold mine in Bendigo, Victoria, Australia, belonging to the genus Bacillus is described. Cells are Gram-positive, motile rods capable of respiring with arsenate and nitrate as terminal electron acceptors using a variety of substrates, including acetate as the electron donor. Reduction of arsenate to arsenite is catalysed by a mem...
متن کاملComment on "A bacterium that can grow by using arsenic instead of phosphorus".
Wolfe-Simon et al. (Research Articles, 3 June 2011, p. 1163; published online 2 December 2010) argued that the bacterial strain GFAJ-1 can vary the elemental composition of its biomolecules by substituting arsenic for phosphorus. Although their data show that GFAJ-1 is an extraordinary extremophile, consideration of arsenate redox chemistry undermines the suggestion that arsenate can replace th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 337 6093 شماره
صفحات -
تاریخ انتشار 2012